Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1342905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425501

RESUMO

Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.

2.
Nucleic Acids Res ; 51(22): 12076-12091, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950888

RESUMO

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.


Assuntos
Desenvolvimento Embrionário , Oócitos , Biossíntese de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos
3.
Open Biol ; 13(8): 230081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553074

RESUMO

Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.


Assuntos
Blastocisto , Embrião de Mamíferos , Camundongos , Animais , Diferenciação Celular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem da Célula , Mamíferos
4.
Open Biol ; 11(7): 210092, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34255976

RESUMO

Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.


Assuntos
Diferenciação Celular , RNA Helicases DEAD-box/genética , Desenvolvimento Embrionário , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , RNA Helicases DEAD-box/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , Gravidez , Ligação Proteica , Transporte Proteico , Transdução de Sinais
5.
Commun Biol ; 4(1): 788, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172827

RESUMO

Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.


Assuntos
Blastocisto/fisiologia , Endoderma/citologia , Biossíntese de Proteínas , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/fisiologia , Desenvolvimento Embrionário , Camundongos , Proteínas de Ligação a RNA/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
6.
Front Cell Dev Biol ; 8: 857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042987

RESUMO

Formation of the hatching mouse blastocyst marks the end of preimplantation development, whereby previous cell cleavages culminate in the formation of three distinct cell lineages (trophectoderm, primitive endoderm and epiblast). We report that dysregulated expression of Wwc2, a genetic paralog of Kibra/Wwc1 (a known activator of Hippo-signaling, a key pathway during preimplantation development), is specifically associated with cell autonomous deficits in embryo cell number and cell division abnormalities. Division phenotypes are also observed during mouse oocyte meiotic maturation, as Wwc2 dysregulation blocks progression to the stage of meiosis II metaphase (MII) arrest and is associated with spindle defects and failed Aurora-A kinase (AURKA) activation. Oocyte and embryo cell division defects, each occurring in the absence of centrosomes, are fully reversible by expression of recombinant HA-epitope tagged WWC2, restoring activated oocyte AURKA levels. Additionally, clonal embryonic dysregulation implicates Wwc2 in maintaining the pluripotent epiblast lineage. Thus, Wwc2 is a novel regulator of meiotic and early mitotic cell divisions, and mouse blastocyst cell fate.

7.
Aging Cell ; 19(10): e13231, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32951297

RESUMO

Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome-wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age-related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.


Assuntos
Oócitos/metabolismo , Fatores Etários , Animais , Feminino , Humanos , Mamíferos
8.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070012

RESUMO

Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)-a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.


Assuntos
Membrana Nuclear/genética , Oócitos/crescimento & desenvolvimento , Polirribossomos/genética , Proteínas de Ligação a RNA/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Meiose/genética , Camundongos , Membrana Nuclear/metabolismo , Oócitos/metabolismo , RNA Mensageiro Estocado/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA-Seq
9.
Front Cell Dev Biol ; 7: 276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788473

RESUMO

Maternal starvation coincident with preimplantation development has profound consequences for placental-fetal development, with various identified pathologies persisting/manifest in adulthood; the 'Developmental Origin of Health and Disease' (DOHaD) hypothesis/model. Despite evidence describing DOHaD-related incidence, supporting mechanistic and molecular data relating to preimplantation embryos themselves are comparatively meager. We recently identified the classically recognized stress-related p38-mitogen activated kinases (p38-MAPK) as regulating formation of the extraembryonic primitive endoderm (PrE) lineage within mouse blastocyst inner cell mass (ICM). Thus, we wanted to assay if PrE differentiation is sensitive to amino acid availability, in a manner regulated by p38-MAPK. Although blastocysts appropriately mature, without developmental/morphological or cell fate defects, irrespective of amino acid supplementation status, we found the extent of p38-MAPK inhibition induced phenotypes was more severe in the absence of amino acid supplementation. Specifically, both PrE and epiblast (EPI) ICM progenitor populations remained unspecified and there were fewer cells and smaller blastocyst cavities. Such phenotypes could be ameliorated, to resemble those observed in groups supplemented with amino acids, by addition of the anti-oxidant NAC (N-acetyl-cysteine), although PrE differentiation deficits remained. Therefore, p38-MAPK performs a hitherto unrecognized homeostatic early developmental regulatory role (in addition to direct specification of PrE), by buffering blastocyst cell number and ICM cell lineage specification (relating to EPI) in response to amino acid availability, partly by counteracting induced oxidative stress; with clear implications for the DOHaD model.

10.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235877

RESUMO

The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.


Assuntos
Envelhecimento/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose , Oócitos/metabolismo , Envelhecimento/genética , Animais , Feminino , Fator Promotor de Maturação/genética , Mesotelina , Camundongos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Oócitos/citologia , Fosforilação , Processamento de Proteína Pós-Traducional
11.
Open Biol ; 7(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29167310

RESUMO

During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis.


Assuntos
Polaridade Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos , Animais , Linhagem da Célula , Transdução de Sinais
12.
Open Biol ; 6(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27605380

RESUMO

During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38ß/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical 'salt and pepper' expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário , Endoderma/embriologia , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Animais , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/fisiologia , Camundongos , RNA Mensageiro/metabolismo , Transdução de Sinais
13.
Reprod Biomed Online ; 33(3): 381-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27430121

RESUMO

The differential activity of the Hippo-signalling pathway between the outer- and inner-cell populations of the developing preimplantation mouse embryo directs appropriate formation of trophectoderm and inner cell mass (ICM) lineages. Such distinct signalling activity is under control of intracellular polarization, whereby Hippo-signalling is either supressed in polarized outer cells or activated in apolar inner cells. The central role of apical-basolateral polarization to such differential Hippo-signalling regulation prompted us to reinvestigate the role of potential upstream molecular regulators affecting apical-basolateral polarity. This study reports that the chemical inhibition of Rho-associated kinase (Rock) is associated with failure to form morphologically distinct blastocysts, indicative of compromised trophectoderm differentiation, and defects in the localization of both apical and basolateral polarity factors associated with malformation of tight junctions. Moreover, Rock-inhibition mediates mislocalization of the Hippo-signalling activator Angiomotin (Amot), to the basolateral regions of outer cells and is concomitant with aberrant activation of the pathway. The Rock-inhibition phenotype is mediated by Amot, as RNAi-based Amot knockdown totally rescues the normal suppression of Hippo-signalling in outer cells. In conclusion, Rock, via regulating appropriate apical-basolateral polarization in outer cells, regulates the appropriate activity of the Hippo-signalling pathway, by ensuring correct subcellular localization of Amot protein in outer cells.


Assuntos
Desenvolvimento Embrionário , Peptídeos e Proteínas de Sinalização Intercelular/análise , Proteínas dos Microfilamentos/análise , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/fisiologia , Angiomotinas , Animais , Blastocisto/metabolismo , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
14.
Sci Rep ; 5: 15034, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26461180

RESUMO

During mouse preimplantation embryo development, three distinct cell lineages are formed, represented by the differentiating trophectoderm (TE), primitive endoderm (PrE) and the pluripotent epiblast (EPI). Classically, lineage derivation has been presented as a two-step process whereby outer TE cells are first segregated from inner-cell mass (ICM), followed by ICM refinement into either the PrE or EPI. As ICM founders can be produced following the fourth or fifth cleavage divisions, their potential to equally contribute to EPI and PrE is contested. Thus, modelling the early sequestration of ICM founders from TE-differentiation after the fourth cleavage division, we examined ICM lineage contribution of varying sized cell clones unable to initiate TE-differentiation. Such TE-inhibited ICM cells do not equally contribute to EPI and PrE and are significantly biased to form EPI. This bias is not caused by enhanced expression of the EPI marker Nanog, nor correlated with reduced apical polarity but associated with reduced expression of PrE-related gene transcripts (Dab2 and Lrp2) and down-regulation of plasma membrane associated Fgfr2. Our results favour a unifying model were the three cell lineages are guided in an integrated, yet flexible, fate decision centred on relative exposure of founder cells to TE-differentiative cues.


Assuntos
Blastocisto/citologia , Blastocisto/fisiologia , Diferenciação Celular/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Reprod Biomed Online ; 27(6): 586-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23768616

RESUMO

The divergence of two differentiating extraembryonic cell types (trophectoderm and primitive endoderm) from the pluripotent epiblast population (the source of fetal progenitor cells) by the blastocyst stage of mouse development relies upon the activation and execution of lineage-specific gene expression programmes. While our understanding of the central transcription factor 'effectors' directing these cell-fate choices has accumulated rapidly, what is less clear is how the differential expression of such genes within the diverging lineages is initially generated. This review summarizes and consolidates current understanding. I introduce the traditional concept and importance of a cell's spatial location within the embryo, referencing recent mechanistic and molecular insights relating to cell fate. Additionally, I address the growing body of evidence that suggests that heterogeneities among blastomeres precede, and possibly inform, their spatial segregation in the embryo. I also discuss whether the origins of such early heterogeneity are stochastic and/or indicative of intrinsic properties of the embryo. Lastly, I argue that the robustness and regulative capacity of preimplantation embryonic development may reflect the existence of multiple converging, if not wholly redundant, mechanisms that act together to generate the necessary diversity of inter-cell-lineage gene expression patterns.


Assuntos
Blastômeros/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Movimento Celular/fisiologia , Embrião de Mamíferos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
16.
Reprod Biomed Online ; 22(6): 512-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498124

RESUMO

Genetic knockout studies in the mouse model first revealed the essential role of zygotically derived Cdx2 transcription factor during the later stages of blastocyst formation, characterized by a lack of functioning trophectoderm. However, the extent to which the potential provision of maternally derived Cdx2 affects preimplantation development has proved much less simple to address. Within the last year, two reports have been published arguing for and against a distinct functional role for maternal Cdx2. This commentary aims to discuss the approaches, results and interpretations of both studies in an attempt to resolve the apparent conflict and to constructively advance collective understanding.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Homeodomínio/fisiologia , RNA Mensageiro Estocado/genética , Fatores de Transcrição/fisiologia , Animais , Fator de Transcrição CDX2 , Linhagem da Célula/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , RNA Mensageiro , RNA Mensageiro Estocado/fisiologia
17.
PLoS One ; 5(8): e12339, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20808788

RESUMO

It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons ("exon-intron marking"), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.


Assuntos
Éxons/genética , Histonas/metabolismo , Íntrons/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Células K562 , RNA Polimerase II/metabolismo , Transcrição Gênica
18.
Curr Opin Genet Dev ; 20(5): 485-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20554442

RESUMO

The temporal and spatial segregation of the two extra-embryonic cell lineages, trophectoderm and primitive endoderm (TE and PE respectively), from the pluripotent epiblast (EPI) during mammalian pre-implantation development are prerequisites for the successful implantation of the blastocyst. The mechanisms underlying these earliest stages of development remain a fertile topic for research and informed debate. In recent years novel roles for various transcription factors, polarity factors and signalling cascades have been uncovered. This mini-review seeks to summarise some of this work and to put it into the context of the regulative nature of early mammalian development and to highlight how the increasing evidence of naturally occurring asymmetries and heterogeneity in the embryo can bias specification of the distinct cell types of the blastocyst.


Assuntos
Implantação do Embrião , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Linhagem da Célula , Polaridade Celular , Endoderma/citologia , Endoderma/crescimento & desenvolvimento
19.
Dev Biol ; 344(1): 66-78, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20430022

RESUMO

Divisions of polarised blastomeres that allocate polar cells to outer and apolar cells to inner positions initiate the first cell fate decision in the mouse embryo. Subsequently, outer cells differentiate into trophectoderm while inner cells retain pluripotency to become inner cell mass (ICM) of the blastocyst. Elimination of zygotic expression of trophectoderm-specific transcription factor Cdx2 leads to defects in the maintenance of the blastocyst cavity, suggesting that it participates only in the late stage of trophectoderm formation. However, we now find that mouse embryos also have a maternally provided pool of Cdx2 mRNA. Moreover, depletion of both maternal and zygotic Cdx2 from immediately after fertilization by three independent approaches, dsRNAi, siRNAi and morpholino oligonucleotides, leads to developmental arrest at much earlier stages than expected from elimination of only zygotic Cdx2. This developmental arrest is associated with defects in cell polarisation, reflected by expression and localisation of cell polarity molecules such as Par3 and aPKC and cell compaction at the 8- and 16-cell stages. Cells deprived of Cdx2 show delayed development with increased cell cycle length, irregular cell division and increased incidence of apoptosis. Although some Cdx2-depleted embryos initiate cavitation, the cavity cannot be maintained. Furthermore, expression of trophectoderm-specific genes, Gata3 and Eomes, and also the trophectoderm-specific cytokeratin intermediate filament, recognised by Troma1, are greatly reduced or undetectable. Taken together, our results indicate that Cdx2 participates in two steps leading to trophectoderm specification: appropriate polarisation of blastomeres at the 8- and 16-cell stage and then the maintenance of trophectoderm lineage-specific differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Apoptose , Fator de Transcrição CDX2 , Diferenciação Celular , Ectoderma/metabolismo , Feminino , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteína Quinase C/metabolismo , Interferência de RNA
20.
PLoS One ; 5(2): e9059, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140202

RESUMO

The SCL (TAL1) transcription factor is a critical regulator of haematopoiesis and its expression is tightly controlled by multiple cis-acting regulatory elements. To elaborate further the DNA elements which control its regulation, we used genomic tiling microarrays covering 256 kb of the human SCL locus to perform a concerted analysis of chromatin structure and binding of regulatory proteins in human haematopoietic cell lines. This approach allowed us to characterise further or redefine known human SCL regulatory elements and led to the identification of six novel elements with putative regulatory function both up and downstream of the SCL gene. They bind a number of haematopoietic transcription factors (GATA1, E2A LMO2, SCL, LDB1), CTCF or components of the transcriptional machinery and are associated with relevant histone modifications, accessible chromatin and low nucleosomal density. Functional characterisation shows that these novel elements are able to enhance or repress SCL promoter activity, have endogenous promoter function or enhancer-blocking insulator function. Our analysis opens up several areas for further investigation and adds new layers of complexity to our understanding of the regulation of SCL expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Acetilação , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Análise por Conglomerados , Células HL-60 , Histonas/metabolismo , Humanos , Células K562 , Lisina/metabolismo , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...